
Improving Large-scale Storage System Performance
via Topology-aware and Balanced Data Placement

Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari, Sudharshan Vazhkudai

National Center for Computational Sciences
Oak Ridge National Laboratory

Email: {fwang2,oralhs,guptas1,tiwari}@ornl.gov

Abstract—With the advent of big data, the I/O subsystems of
large-scale compute clusters are becoming a center of focus, with
more applications putting greater demands on end-to-end I/O
performance. These subsystems are often complex in design. They
comprise of multiple hardware and software layers to cope with
the increasing capacity, capability and scalability requirements
of data intensive applications. The sharing nature of storage
resources and the intrinsic interactions across these layers make
it to realize user-level, end-to-end performance gains a great
challenge.

We propose a topology-aware resource load balancing strat-
egy to improve per-application I/O performance. We demonstrate
the effectiveness of our algorithm on an extreme-scale compute
cluster, Titan, at the Oak Ridge Leadership Computing Facility
(OLCF). Our experiments with both synthetic benchmarks and
a real-world application show that, even under congestion, our
proposed algorithm can improve large-scale application I/O
performance significantly, resulting in both the reduction of
application run times and higher resolution simulation runs.

Keywords—Storage Area Network, Parallel File System, High
Performance Computing, Performance Evaluation

I. INTRODUCTION

Domain scientists often rely on high performance comput-
ing to simulate and understand physical phenomena, and to
discover scientific knowledge in a wide range of disciplines.
Large-scale scientific simulations can be both compute and I/O
intensive as they produce and process large amounts of data
in a very short period of time, which stresses and stretches the
capability of file and storage system. This bursty I/O pattern
may arise out of the applications’ own practical needs, or, it can
be an artifact of so-called defensive programming, where peri-
odic checkpoints are used to compensate for possible failures
of large-scale compute clusters. With the advent of big data
and the new crop of data-intensive applications, the amount of
data being generated is likely to increase significantly, hence,
performance and capabilities of file and storage systems will
become even more critical.

Unfortunately, a file and storage system with a designed
peak throughput does not always lead to higher performance
at the application level due to multiple factors. First, an I/O
subsystem is typically shared among multiple consumers with
different usage patterns, leading to potential load imbalances
and increased contention. Second, the architecture of I/O
subsystems is becoming increasingly complex. For example,
an I/O request may travel through multiple paths and may
experience different delays at different components it traverses.
At Oak Ridge Leadership Computing Facility (OLCF), we
observe firsthand that such a complex I/O subsystem suffers

from severe contention and that there exists a significant load
imbalance among different components in the storage system,
as shown in Section III.

To address the I/O load imbalance and contention issues,
we propose a topology-aware, balanced placement strategy that
is based on a site-defined, tunable, weighted cost function of
selectable resources. The strategy is topology-aware because
it assigns weight factors to separate resource components
depending upon which storage layer they belong to, as different
storage layers have different degree of impact on the end-to-
end performance. It is balanced as it keeps track of usage of
all storage components and balances the load along the end-
to-end I/O path.

For evaluation purposes, we have implemented our al-
gorithm as an easy-to-use, user-space library and performed
extensive experiments on the Titan supercomputer [1] and
Lustre based Spider II file and storage system [2]. A detailed
discussion on Titan’s end-to-end I/O path and Spider II can be
found in Section II.

By repeating small-, medium-, and large-scale experiments
over extended period of time in a production environment
with different compute node allocation layouts on Titan,
we demonstrate that the proposed technique is effective in
improving application I/O performance at different scales.
More importantly, it is not dependent on any fortunate node
allocation layout. Further, we integrate our library with a large-
scale scientific application, S3D. Our evaluation indicates that
the proposed scheme provides significant improvements to
S3D application even in a noisy, production environment on
Titan supercomputer.

It should be noted that, our proposed strategy can also be
implemented as system-wide resource load-balancer. However,
for simplicity and without loss of validity, we decide to start
out as a user-space library because it is easy to test, evaluate
and deploy such prototype as compared to a system-wide
library on a production environment. It is conceivable and
desirable to integrate our proposed algorithm with popular
I/O middleware solutions such as HDF5 [3], [4], [5] and
ADIOS [6], [7], [8] so that applications can effortlessly take
advantage of the performance benefits without having to inter-
face with yet another library and modify their I/O code.

Although the implementation and experimental context of
our work are centered around Titan and Lustre, the load im-
balance issue in large-scale storage systems is not uncommon
at other large-scale compute clusters as indirection layers are
being employed to scale out the infrastructure. Given the
popularity of the Lustre parallel file system [9], we think that

our path of exploration and proposed methods may find wider
applicability, and should be beneficial to the cluster computing
community at large. Also, it is expected that the amount of data
being generated from the scientific simulations will continue to
increase in the big data era. Therefore, we believe our proposed
strategy to improve the I/O performance of large-scale data-
intensive scientific applications is likely to become even more
important in the near future.

The contributions of this paper are three fold. First, we
empirically show that how a simple yet typical I/O use case
in a large-scale, layered file and storage system can lead to
I/O load and resource use imbalance. Second, we propose and
implement a topology-aware, balanced placement strategy to
address the load and resource use imbalance issues. Third, we
demonstrate, with both synthetic benchmarks and a real-world
scientific application, that this strategy can indeed mitigate the
problem and improve application I/O performance significantly
regardless of the layout of compute node allocation. It is the
latter point that takes this approach beyond Titan-specific en-
vironment and makes it generally applicable to other compute
and storage infrastructures as well.

The rest of paper is organized as follows. In Section II,
we provide a detailed description of the Titan and Spider II
infrastructure. Its complex I/O path and empirically observed
congestion points motivate the design of the end-to-end, bal-
anced placement strategy, which is elaborated in Section III.
In Section IV, we discuss our experimental setup, evaluation
strategy and testing results. In Section V, we present an
example of application integration, our experience and results.
Finally, Section VI summarizes the paper and discusses the
future work.

II. BACKGROUND AND RELATED WORK

Since we evaluate our proposed technique on the Titan
supercomputer and Spider II parallel file system, this section
aims at presenting relevant architecture details of Titan and
Spider II. Also, since the I/O traffic of compute clients will
traverse interconnect network in both directions (read and
write), the placement of I/O routers have a tremendous impact
on traffic pattern. The past and current research efforts on
interconnect routing congestion avoidance indirectly motivate
our proposed solution. Therefore, we will review these and
other resource balancing related works in the latter part of the
section.

Titan is a Cray XK7 system with 18,688 compute nodes,
710 TB of total system memory [10]. This high capability
compute machine is backed by a center-wide parallel file
system known as Spider II. Spider II is one of the world’s
fastest and largest POSIX complaint parallel file systems. It
is designed to serve write-heavy I/O workloads generated
by Titan compute clients and other OLCF resources. The
topology and architecture details of Spider II infrastructure
are illustrated in Figure 1 and described as follows:

On the back-end storage side, Spider II has 20,160 disks
organized in RAID 6 arrays. Each of these RAID arrays
act as a Lustre Object Storage Target (OST). An OST is
the target device where the Lustre parallel file system does
file I/O (read or write) at the object layer. These OSTs are
connected to Lustre Object Storage Servers (OSSes) over

Titan Compute Cluster

SION II
Infiniband Network

1600 ports, 56 Gbit/sec

InfiniBand switch complex

Storage Servers (OSS)
Lustre parallel file system

288 Dell servers with

64 GB of RAM each

Cray XK-7 3D Torus

Lustre Router Nodes
run parallel file system

client software and
forward I/O operations

from HPC clients.

440 Router nodes

configured as Lustre

routers on Titan

Enterprise Storage
controllers and large

racks of disks are connected
via InfiniBand.

36 DataDirect SFA12K-40

controller pairs with

NL- SAS drives

and 8 InifiniBand FDR

connections per pair

FIG. 1: INFRASTRUCTURE AND I/O PATH BETWEEN TITAN (CRAY XK-7)
AND ITS BACKEND STORAGE

direct InfiniBand FDR links; these OSSes currently run Lustre
parallel file system version 2.4.2. There are a total of 288
OSSes and each OSS has 7 OSTs (a total of 2,016 OSTS).
Spider II is configured and deployed as two independent and
non-overlapping file systems to increase reliability, availability,
and overall meta data performance. Each file system, therefore,
has 144 Lustre OSSes and 1,008 Lustre OSTs.

Each OSS is connected to a 36-port IB FDR Top Of the
Rack (TOR) switch. Each TOR switch is connected with a
total of 8 OSSes. Each switch also connects to two 108-
port aggregation switches. The aggregation switches provide
connectivity for the Lustre meta data and management servers.

On the front-end at the compute side, there are two different
types of nodes in Titan: compute and Lustre I/O router nodes.
Both types of nodes are part of the Gemini network [11] in
3D torus topology. Each node has a unique network ID (NID)
for addressing purposes. A total of 440 nodes on Titan are
configured as Lustre I/O routers, 432 of which are used for
routing Lustre file I/O traffic between Titan and Spider and 8
are used for routing Lustre meta data I/O. Titan I/O routers are
connected to SION TOR switches via InfiniBand FDR links.
Note that the SION TOR switches enable these I/O routers to
reach to the back-end storage system (OSSes and OSTs).

In order to provide connectivity over different networks
and communicate between file system clients and servers over
these networks, Lustre provides a network abstraction layer
called LNET (Lustre Networking) [12].

Lustre can route traffic between multiple networks of the
same or different types. This functionality is provided by
Lustre I/O routers. By default, Lustre uses a round-robin
algorithm to pick routers. The first alive router on top of the list
will be picked to route the message and then will be placed
at the end of the list for the next round to provide a load
balance among multiple routers. Each SION TOR switch is
assigned an LNET route. Our proposed technique focuses on
balancing the load on resources from the Luster I/O routers
up to the OSTs. The algorithm improves I/O performance by

intelligently selecting I/O end points (Lustre router, LNET,
OSS and OSTs).

Since the interconnect networks in HPC environments are
the backbone for both message exchange and I/O traffic,
optimizing network communications has been a popular re-
search topic. Fine grain routing in the context of Lustre file
system [13] targets at minimizing congestion in the system-
wide 3D-torus interconnection network. A preemptive resource
throttling approach was introduced in [14]. This approach
presented an open loop end-point throttling of number of
messages in flight per core or throttling number of cores
per node to increase performance scalability. Another conges-
tion control mechanism was presented in [15]. The proposed
method was again based on throttling resources and specif-
ically designed for HPC clusters with InfiniBand networks.
The design concept was to limit and load-control the multipath
expansion in order to maintain low and bounded network
latency for I/O traffic. A follow-up work was presented
in [16]. Predictive and Distributed Routing Balancing (PR-
DRB) technique was proposed to monitor messages latencies
on I/O routers and record solutions to congestion, to quickly
respond in future similar situations. A Step-Back-on-Blocking
(SBB) flow-control mechanism that primarily addresses the
allocation effectiveness in high-radix interconnection networks
was proposed in [17]. This method combined the advantages
of the wormhole and cut-through routing algorithms for torus
networks, while adding a means for adaptive allocation of
the communicational resources. The proposed SBB mechanism
was shown to provide low message latency and achieved high
fraction of the maximal channel bandwidth by performing
conditional evasion of temporary blocked network resources
or traffic hot-spots.

HPC network communications, such as I/O, is a special
case since that most of the traffic is short-lived and bursty.
Adaptive routing mechanisms are shown to be highly effective
for long-lived traffic [18], however, they have not been deeply
evaluated for HPC environments. To the best of our knowl-
edge and experience, it is the specialized HPC networking
hardware’s responsibility to optimize the network and I/O
traffic. The Quadrics network [19], is a good example to
that, which uses a network operating system and specialized
hardware to support high-performance data transfers for HPC
environments. Of these HPC I/O specialized solutions, per-
haps one of the most mature ones is PaScal [20]. It had
several interesting technologies, including multi-level switch-
fabric interconnection network, bandwidth on demand. As
mentioned earlier, our focus in this work is to provide further
performance improvements by enabling applications to direct
I/O intelligently across layers along the I/O path.

I/O load imbalance is a known problem for the HPC
domain and data centers [21]. Multiple approaches have been
proposed to solve this problem. In [22], it was proposed to
modify the PVFS file system [23] to achieve better I/O load
balancing. In [24], authors described a load imbalance problem
for cloud data centers. Their algorithm was designed to adjust
the two end points on the I/O path, computational virtual
machines and virtual disks, to balance the overall load in a
data center. Other approaches have been proposed such as,
replicating data or moving the I/O intensive compute jobs to
eliminate hot spots [25]. To the best of our knowledge, there

has not been a proposed solution aimed at solving the end-
to-end I/O load imbalance problem within the constraints of a
large-scale HPC production environment.

Another thread of research tackling the general resource
allocation and optimization problem is to use the generic
knapsack algorithms [26], [27], [28], [29], [30]. In particular,
the precedence constrained knapsack problem for HPC domain
has been studied by [31], [32]. However, these approaches
focus only at job scheduling to optimize compute system
utilization, and have not proven to be applicable to the I/O
load imbalance problem in the HPC domain. The next section
describes our balanced placement strategy.

III. BALANCED PLACEMENT STRATEGY

In this section, we describe our placement algorithm that
aims to balance per job I/O resource allocations. In the most
general case, the problem can be formulated as:

C = w1R1 + w2R2 + w3R3 . . .+ wnRn,

subject to w1 + w2 + w3 + . . . wn = 1, where C is the cost
of an I/O path being evaluated, Ri is the resource component
along the I/O path and wi is the weight factor assigned to the
resources. If the goal is to minimize the I/O cost, then a weight
factor reflects the likelihood of the particular type of resources
to be a point of contention. Resources in the case of our
evaluation can be logical I/O routes (i.e., LNET), or actual file
system and networking devices (i.e., Lustre I/O routers, OSSes,
OSTs, and SION InfiniBand TOR leaf switches). We aim at
distributing the I/O traffic evenly across resource components
to avoid point of contention. However, as to be discussed in the
following section, such a scheme needs take into consideration
of the topology and resource dependencies.

A. Need for Balanced Resource Usage

To understand the need for balanced placement and justify
why the proposed algorithm works, we conduct the following
illustrative experiment.

We launch 4096 processes with each process doing a single
file I/O operation against half of the Spider II file system. The
traces of those files are analyzed to examine the utilization
distribution of different components.

Figure 2 (a), (b) and (c) shows the resource usage distri-
bution for OSTs, OSSes and LNETs, respectively. Recall that
there are a total of 1008 OSTs, 144 OSSes, and 18 LNETS
in one half of the Spider II file system. We observe that there
exists a significant variation in usage across across components
of any given type (e.g., OST, OSS or LNET). For example,
some OSTs are used more than 10 times while some others are
never used (corresponding to zero frequency count). Similarly,
OSSes and LNETs show significant usage-imbalance under the
default placement strategy. Consequently, imbalanced resource
utilization increases the contention at certain components more
than others.

One may think that a naive sequential round-robin al-
location may fix this. However, we show that round-robin
allocation scheme doesn’t resolve this issue. We illustrate this
by using an example that only involves OSTs (for simplicity)

0
1
2
3
4
5
6
7
8
9
10
11
12

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(a) Default OST Placement

0

10

20

30

40

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(b) Default OSS Placement

200
210
220
230
240
250
260
270
280
290
300

200 202 204 206 208 210 212 214 216 218

LNET index

F
r
e
q
u
e
n
c
y

(c) Default LNET Placement

0

1

2

3

4

5

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(d) Balanced OST Placement

20
21
22
23
24
25
26
27
28
29
30

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(e) Balanced OSS Placement

220
221
222
223
224
225
226
227
228
229
230

200 205 210 215

LNET index

F
r
e
q
u
e
n
c
y

(f) Balanced LNET Placement

FIG. 2: COMPARISON OF RESOURCE USAGE DISTRIBUTION: DEFAULT VS. BALANCED

OST
i

OST
i + 1

OST
i + 2

OST
i + 3

OST
i + 4

OST
i + 5

OST
i + 6

FIG. 3: OST ALLOCATION EXAMPLE

and not the components from other layers such as I/O routers
and LNETS.

Figure 3 shows a set of six OSTs, three of them are
assigned to one OSS and the rest three to other OSS. They are
distinguished by different gray codes. After allocating OSTi,
if we allocate the next target to be OSTi+1, then the two
processes are going to compete for the resources within a
single physical OSS (as these two OSTS reside within the same
OSS). The dotted arrow line represents an allocation scheme
that takes OSS boundary into consideration. As we scale up the
number of I/O processes, we may have to eventually loop back
and allocate more than one OST per OSS. The take-away of
this example is to show that one needs to take resource usage of
other components and their dependencies into account, and not
solely focus on components in one layer in isolation. Focusing
on components in one layer in isolation may still result in
imbalanced resource utilization. Next, we present a detailed
description of balanced placement algorithm.

B. Balanced Placement Algorithm

Recall from Section II that an I/O request on Titan traverses
through a complex path and gets allocated multiple resources
on the way. In particular, I/O requests coming out of a compute
node goes to an I/O router node via high-speed Gemini

interconnect. From I/O routers, these I/O requests traverse to
SION leaf switches via “logical” I/O network (called LNET,
from here on). Depending on its destination OST, there could
be different logical LNETs an I/O request can cross. Next,
from SION leaf switches these I/O requests go to Lustre
OSSes, and then to Lustre OSTs.

A placement strategy can be simply viewed as an assign-
ment/binding of an I/O client (be it a compute node or MPI
process) to an OST. However, an I/O request can take multiple
possible paths (via different I/O routers, LNETs, and OSSes)
to reach the same OST. A strategy that attempts to place an
I/O request in a balanced fashion across these resources (I/O
router, LNET, OSS and OST) should have a way to quantify
the cost of a particular I/O path. To this end, we define a
placement cost function that takes weighted average of how
frequently different resources have been used by previous I/O
requests originating from the same application.

placement cost = w1 × rtr_freq + w2 × lnet_freq
+ w3 × oss_freq + w4 × ost_freq

where rtr_freq, lnet_freq, oss_freq and ost_freq are usage
frequency of I/O routers, LNETs, OSSes and OSTs. Respective
relative weight factors are denoted as w1, w2, w3, and w4.
Given a compute node, the algorithm loops over all the
reachable OSTs to choose one with the lowest placement
cost (as shown below). The same process is repeated for all
the compute nodes allotted to the application. Note that this
function is invoked only once before an application enters I/O
phase.

1: procedure BALANCED PLACEMENT (List of NIDs, List
of OSTs)

2:
3: lnet_freq ← 0, rtr_freq ← 0
4: oss_freq ← 0, ost_freq ← 0
5: random_offset ← randomly selected reachable lnets
6: for all NIDs in the input NID list do
7: lnet ← random_offset
8: for all reachable OSTs do
9: cost ← MAX

10: oss ← ost2oss() . map OST to OSS
11: mycost ← placement_cost(
12: lnet_freq, rtr_freq ,oss_freq, ost_freq)
13: if mycost < cost then
14: mycost ← cost
15: picked_ost ← ost
16: picked_oss ← oss
17: end if
18: end for
19: record NID and the selected OST
20: increment lnet_freq, rtr_freq, oss_freq, ost_freq
21: end for
22: end procedure
23:

Next, we discuss the key design issues and choices of
our proposed algorithm. First, how do we decide the weight
factors? Generally speaking, these tunable parameters are site
dependent, which require a careful analysis and systematic
evaluation to identify the possible congestion point. We take
advantage of our decade-long experience with these file sys-
tems to assess which components are utilized in a relatively
more imbalanced fashion. As a generic observation, load across
OSTs are more imbalanced compared to other components.
It led us to set the value of w4 higher and evenly split the
rest as: w1 = 0.2, w2 = 0.2, w3 = 0.2, and w4 = 0.4 in
our prototypes. We do not claim that these weight factors are
optimal. However, Figure 2 (d), (e) and (f) show that these
weight factors resolve the load imbalance issue. Our evalu-
ation results show that these heuristic settings can improve
performance significantly. Further fine-tuning of these weight
factors may remove a few outliers visible in Figure 2 (d), (e)
and (f), however we believe these outliers may not result in
additional significant performance gains than what our current
weight factor based design already provides.

Second, what is the overhead of this strategy? Our scheme
incurs modest computational overhead, because the algorithm
is invoked only once before each I/O phase. The internal data
structures ensure that storage overhead associated with each
allocation requests are kept to minimal and resource can be
freed as soon as possible.

Third, will invocations of the same algorithm from different
applications create additional source of contention? We are
careful in ensuring that it doesn’t create contention among
applications. We instantiate the LNET selection with a ran-
dom offset ensuring that different application have different
starting points and hence, less likely to contend for the same
paths and OSTs. We note that our proposed algorithm would
be complimentary to system-wide contention-aware resource
allocation scheme, as it doesn’t create any new artificial source
of contention.

Finally, under what settings will this algorithm not perform
well? Our algorithm is sensitive to the size of the possible

0
5

0

5

15

10

15

20
20

10
15

Y-axis

10

5

Z-axis

X-axis

0

FIG. 4: COVERAGE OF NODES FOR OUR EXPERIMENTS ON TITAN: X AND
Y-AXIS REPRESENT THE ROWS AND COLUMNS OF CABINETS, AND Z-AXIS
IS A CABINET IN THE VERTICAL DIRECTION.

resources (for example, reachable OSTs) and routing paths.
When number of I/O processes are small and tightly packed
in close proximity, they are likely to have access to a set of
less optimal OSTs and hence, corresponding routes as well.
In such cases, our algorithm has relatively less opportunity to
perform load balancing. This is confirmed by our experiments
to be discussed in details in the next section, where we
achieve relatively modest performance improvements at low
node counts.

In the next section, we will discuss the experimental setup
and evaluation results using this placement strategy.

IV. EXPERIMENTAL SETUP AND EVALUATION

In this section, we first describe the experimental setup,
then we present and analyze our evaluation results both from
a synthetic benchmarking tool and real scientific application.

We rely on synthetic benchmarking for assessing the
strength and weakness of our approach because (1) it is not
always possible to test with a varied range of parameters and
perform sensitivity studies with real application codes; (2)
compute allocation time is very expensive on Titan supercom-
puter: it is calculated that the operational cost is about $1
per node per hour. Since Titan has 18,688 compute nodes, it
amounts to an estimated $18,688 per hour. Therefore, testing
with a synthetic application that only stresses I/O provides
significant cost savings.

Our synthetic benchmarking tool, referred to as Placement
I/O (PIO), is specifically designed to do comparative analysis.
We also discuss our experience of application integration by
instrumenting a large scale scientific application, S3D [33], a
high-fidelity turbulent reacting flow solver to demonstrate the
effectiveness our proposed scheme on Titan supercomputer.

A. Experimental Setup

We perform all our experiments on Titan supercomputer.
There are two major issues that we address to demonstrate that
our results are representative.

First, we run all our experiments in a busy production
environment. That is, we didn’t take advantage of maintenance
quiet period to perform our experiments. We ran all our

-20

0

20

40

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 8

-60

-40

-20

0

20

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 16

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 32

0

20

40

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 64

0

50

100

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 128

0

25

50

75

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 256

0

30

60

90

120

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 512

0

25

50

75

0 1 2 3 4 5 6 7 8 9

Different Runs

Pe
rf

or
m

an
ce

 Im

pr
ov

em
en

t (
%)

Number of Nodes: 1024

FIG. 5: PERFORMANCE IMPROVEMENT OVER DEFAULT PLACEMENT, PIO-BASED SCALING TESTS ON TITAN.

experiments while other users were running their scientific
experiments as well. We believe that presenting such results
shows that our performance gains can be and are observed in
a active production environment.

Second, we show that our experiments cover a broad set
of nodes on Titan, instead of a small subset of cherry-picked
nodes. This demonstrates that the performance gains of our
library can be achieved by any application irrespective of what
set of nodes the scheduler may allocate. Next, we explain how
our experiment design achieves a decent coverage of whole
Titan supercomputer.

For a submitted job, application Level Placement Scheduler
(ALPS) used on Titan tends to return the allocated node-list
where nodes are logically close to each other as much as pos-
sible (to reduce communication latency variance). Therefore,
there are two ways to achieve a higher node coverage over
multiple runs: (1) submit scaled runs one after another through
dependency specification such that each run will be scheduled
independently and hopefully cover a different set of compute
nodes; (2) submit scaled runs simultaneously, conjecturing that
if some previously submitted large-scale job finishes and frees
up many compute resources, our experiments can therefore
occupy a larger area of coverage.

Since both approaches have merits, we mix and match our
runs using both methods to gain broader coverage. In the end,
we were able to obtain results from more than 30 scaled runs,
with each run to sample allocation point ranging from as few
as 4 nodes to as high as 1024 nodes. For each allocation point,
we perform multiple iterations for both default placement and
balanced placement, resulting more than 3000 data points.
We keep track of the allocated nodes for each run, remove
redundant nodes, and convert the logical NID into a 3D point
in the Torus topology. The result is visualized by Figure 4. It
shows that through repeated runs, we achieve a notably high
coverage of overall allocation space.

B. Placement I/O Benchmarking Tool (PIO)

For evaluation purpose, we designed and implemented a
new MPI-based placement I/O benchmarking tool, PIO. It

0.79	

12	
4.9	

28.8	

58.5	 59.2	

76.4	

53.1	
58.9	

-5
5
15
25
35
45
55
65
75
85

4 8 16 32 64 128 256 512 102416384

Pe
rf

or
m

an
ce

Im

pr
ov

em
en

t
(%

)

Number of Nodes

 Average I/O bandwidth improvement
PIO-based scaling tests

FIG. 6: AVG. PERFORMANCE GAINS (IN %): BALANCED PLACEMENT VS.
DEFAULT PLACEMENT

operates in two modes, the default mode and the placement
mode. For the default mode, it follows closely with what an
IOR benchmark tool [34] does. We have empirically validated
the results which are comparable given the same set of runtime
parameters in POSIX I/O: block size, transfer size, fsync
option. For the balanced placement mode, PIO make use of
MPI call to gather the running compute node IDs, invoke the
placement I/O library for data placement on OSTs, pre-create
the files using Lustre’s llapi library with specific layout,
then perform the I/O operations. This allows us to conduct a
side-by-side comparison given the same set of compute node
allocation on Titan. In addition, PIO maintains and outputs
detailed I/O timing information for each MPI process as well
as allocation information for post-analysis.

C. Evaluation Results

The results of the scaling runs are summarized in Figure 5.
Each sub-figure represents a particular node allocation, scaling
from 8 nodes to 1024 nodes. The X-axis represents enumer-
ation of runs of the same count of node allocation, but for
different set of nodes.

Since our experiments are conducted in a noisy, active
production environment, the absolute performance number
gained during one run may not always be conclusive. To
address this issue, we perform multiple runs over extended
period of time and at least three iterations in each run.
Note that iterations within one run get the same set of
nodes for both default and balanced placement strategy; this
is essential for fair comparison between these two schemes
per iteration. While different runs are allocated on different
set of nodes, enabling us to cover a broad set of compute
nodes on Titan. In other words, this methodology helps us
average out the variance across the same set of allocated nodes
and also cover a large set of Titan compute nodes. We use
arithmetic average of multiple iterations within same run for
comparison. We use performance improvement in percentage
as our metric for comparison: Performance Improvement =
100 ∗ (BWbalanced_placement/BWdefault_placement − 1).

We present PIO-based scaling results in Figure 5; a
negative value is colored in red and positive improvement
is colored in blue for better visual representation in color.
From the figure, we make following observations. First, the
effectiveness of the our proposed scheme is relatively small
or insignificant in some cases when running at small scale
(up to 32 nodes). Second, as we scale up in terms of I/O
processes, our proposed scheme consistently yields significant
performance improvement. We even logged more than 100%
performance improvement in multiple cases (see Figure 5 for
128 and 512 node runs. For example, in one run with 512
nodes, the average performance gain of three iterations is from
25.6 GB/s to 55.3 GB/s). Third, while there are variations
across different runs, we observed that the trend remains the
same and there have been consistent performance gains across
multiple runs and iterations.

Next, we show the average performance improvement
across runs in Figure 6. It confirms that for more than 128
I/O nodes, we consistently observe more than 50% speed up
with balanced placement algorithm.

We also conducted experimental runs at close to the full
scale of Titan, a total of 16,384 nodes participating the I/O.
These results are not shown in Figure 5, since we have only
two runs of results at this particular scale comparing to tens
of runs at the smaller scale. Nevertheless, it clearly shows
that balanced placement algorithm can improve per job I/O
performance for more than 50% at this extreme scale as well.

D. Effect of the Stripe Count

The use of striping serves two major purposes: (1) provide
high-bandwidth access to a single file, (2) improve perfor-
mance when OSS bandwidth is exceeded. We note that our
current implementation and evaluation assumes that the stripe
count parameter is set to one. This is an practical limitation
imposed by the Lustre, and not by our balanced placement
algorithm per se: Lustre, as it is, supports a restricted form of
stripe layout to the user land, i.e., the first starting index of OST
only. There are ongoing development to lift this restriction, but
this has not materialized yet.

Even with this restriction in place, we conducted exper-
iments to show how increasing the stripe count to four (the
default value as of Lustre version 2.4) in the base case will

0

10000

20000

30000

0 200 400 600 800 1000

Number of Nodes

Ba
nd

w
id

th
 (M

B/
s)

Placement Mode Balanced Default

FIG. 7: BANDWIDTH COMPARISON: BALANCED PLACEMENT (STRIP COUNT
= 1) VS. DEFAULT PLACEMENT (STRIP COUNT = 4)

compare with our proposed scheme. The experimental results,
as shown in Figure 7, suggests that as the system scales,
our proposed scheme with stripe count of one can actually
outperform default I/O with default stripe count of four. We
believe that when stripe layout with multiple OSTs is possible,
our algorithm can take full advantage of it and deliver even
better scaling results. We also note that increasing the stripe
count is likely to increases the pressure on meta-data severs,
and hence, it doesn’t always yield performance over the stripe
count equal to one. We show, in the next section, that S3D
performs better with the stripe count equal to one compared
to the stripe count equal to four, at large node counts. However,
our proposed scheme continues to improve performance when
applied with stripe count equal to one.

V. APPLICATION INTEGRATION

In this section, we demonstrate the effectiveness of our
balanced placement approach by integrating placement library
(libPIO) with a large-scale scientific application, S3D, a high-
fidelity turbulent reacting flow solver [33]. S3D writes state
of the simulation to the file system which is later used for
analysis. The data file also serves as a checkpoint to restart.
Both MPI collective I/O and Fortran I/O are supported in this
application. We use Fortran I/O because the I/O bandwidth
achieved by Fortran I/O has been shown to perform better
than MPI I/O [35].

Only 30 lines of code [36] were needed to be added/modi-
fied in the checkpoint subroutine of the application to integrate
the placement library. Primary additions were the init(),
nid2ost() and finalize(). A lfs setstripe call was
also to added to provide the desired placement of output files
on Lustre OSTs. In the prototype version of the library, the
list of node-ids (nids) is not stored in libPIO and hence each
nid2ost() call is surrounded by a gather operation for nids
from all the ranks, and scatter operation for ost-ids to all the
ranks. In the future work, we plan to make the interface of
libPIO more robust and the init() call itself will provide
the nids to libPIO. In this manner each rank would be able to
call nid2ost() by passing its nid to get a placement suggestion
(i.e. OST) for the particular rank (obviating the need of gather
and scatter operation for nids and OST-ids respectively). The
libPIO is written in C and S3D code is primarily written in

Fortran, so we had to include some extra code as well to
provide bindings and wrappers to library calls which is not
needed if an application is writte in C/C++.

One key difference in the methodology of PIO benchmark-
ing tool and S3D is that by default S3D uses all the cores
present on a compute node (i.e. 16 cores per node on Titan).
This packs more work on a compute node to improve the
computational efficiency of the simulation. Please note that,
each compute node on Titan runs a single OS and there is
a single mount point per file system on a given compute
node. From libPIO point of view, all 16 cores on a compute
node share the same file system end point (i.e. Lustre OST).
Therefore, S3D’s approach creates additional pressure on a
Lustre OST. Despite this additional pressure, our balanced
placement scheme performs reasonably well as discussed next.

We perform scaled runs with 150, 375, 750, 1,125, 1,875
and 3750 nodes which corresponds to 2,400, 6,000, 12,000,
18,000, 30,000 and 60,000 MPI processes, respectively. We
use weak scaling of problem grid size such that each process
generates a 27 MB of output/checkpoint file periodically (11
such checkpoints in each run). The I/O bandwidth measure-
ment is performed for default placement (both stripe count
of 1 and 4) and balanced placement by running three S3D
simulations in the same allocation back-to-back (same as PIO
methodology).

In Figure 8, we present the summary of I/O bandwidth
improvements observed for S3D from using placement library
relative to using default placement. The improvements are
averaged over ten runs for each configuration. We compare our
balanced placement approach with system default stripe count
of 4 as well as stripe count of 1. From Figure 8, we observe
that smaller node count (i.e. 150, 375 and 750) runs show
better performance with stripe count 4 than default or balanced
approaches with stripe count of 1. As the node count grows,
1,125 nodes and larger, we observe that balanced placement
approach can outperform the default approach with both stripe
counts 1 and 4. This is consistent with performance results in
Section IV-D from synthetic benchmark experiments. For node
count of 1,875 and 3,750, there is significant improvement in
I/O bandwidth when libPIO is used with S3D for balanced I/O
placement.

0	

5	

10	

15	

20	

25	

30	

150	 375	 750	 1125	 1875	 3750	

Pe
rf
or
m
an

ce
	

Im
pr
ov
em

en
t	 (
%
)	

Number	 of	 nodes	

Default	 (Stripe	 count	 =	 4)	 Balanced	 (Stripe	 count	 =1)	

FIG. 8: AVERAGE I/O BANDWIDTH IMPROVEMENT FOR S3D (IN %):
BALANCED VS. DEFAULT PLACEMENT (RELATIVE TO DEFAULT PLACE-
MENT, STRIPE COUNT = 1)

To summarize, the performance of libPIO is lower when
node/processor count is smaller, which we also observed in the

case of PIO benchmark (Figure 7). For large node/processor
counts, our experiments conclude that libPIO for scientific
applications, like S3D, shows very promising results. Although
our tests were conducted in a production (noisy) environment,
we observed substantial gains in I/O performance. Also, the
ease of implementation with minimal code changes makes us
believe that libPIO can be widely adopted by scientific users
and middleware I/O libraries.

VI. DISCUSSION AND CONCLUSIONS

While center-wide shared file systems, like the one de-
ployed at Oak Ridge Leadership Computing Facility, have their
own advantages, it remains challenging to translate the raw
capability into visible and predictable improvement for user
applications. This is due to a variety of reasons, ranging from
the shared design of the system and the contention caused by
complex nature of storage infrastructure and highly sophisti-
cated and often non-deterministic end-to-end I/O routing paths.

This paper proposed a topology-aware, end-to-end I/O
resource allocation strategy, which aims at distributing the
load on I/O paths in a more balanced fashion. This strategy is
implemented as a user-level, easy-to-use library, and evaluated
extensively, at-scale on the Titan supercomputer and Spider II
file and storage system. We demonstrated that I/O performance
can be improved by more than 50% on a per-job basis
using synthetic benchmarks. Our experiments with a real-world
scientific application showed that our balanced placement
algorithm is effective in improving write I/O bandwidth even
in a noisy (i.e., active production) environment. Moreover,
the simplicity of integrating the library into a real scientific
application gives us the confidence that it is a viable solution
for scientists to utilize for improving their applications’ I/O
performance.

Although our evaluation platform is centered around Titan
and Spider II, the load and resource imbalance issue are
quite common in large-scale storage infrastructure. This is
especially true as more indirection layers are employed to drive
capability, capacity and scalability to the next level and to meet
the demands of big data. We believe our path of exploration
and proposed techniques can find wider applicability in the
future and benefit community at large.

ACKNOWLEDGMENT

We thank Bradley Settlemyr and Douglas Fuller for their
feedbacks on earlier drafts of this paper, and Gary Liu for
sharing his experience on ADIOS integration.

This research used resources of the Oak Ridge Leadership
Computing Facility, located in the National Center for Com-
putational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the Department of
Energy under Contract DE-AC05-00OR22725.

This manuscript has been authored by UT-Battelle, LLC,
under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

REFERENCES

[1] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H.
Rogers, “Titan: Early experience with the Cray XK6 at Oak Ridge
National Laboratory,” in Proceedings of Cray User Group Conference
(CUG 2012), May 2012.

[2] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai,
F. Wang, Y. Kim, J. Rogers, and J. Simmons, “OLCF’s 1 TB/s,
next-generation lustre file system,” in Cray User Group, Napa Valley,
California, May 2013.

[3] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the hdf5 technology suite and its applications,” in Proceed-
ings of the EDBT/ICDT 2011 Workshop on Array Databases. ACM,
2011, pp. 36–47.

[4] M. Folk, A. Cheng, and K. Yates, “HDF5: A file format and i/o
library for high performance computing applications,” in Proceedings
of Supercomputing, 1999.

[5] M. Howison, “Tuning HDF5 for Lustre file systems,” in Workshop
on Interfaces and Abstractions for Scientific Data Storage (IASDS10),
2010.

[6] “ADIOS: the adaptive I/O system,” https://www.olcf.ornl.gov/
center-projects/adios/.

[7] J. Lofstead, S. Klasky, S. K., N. Podhorszki, and C. Jin,
“Flexible IO and Integration for Scientific Codes Through The
Adaptable IO System (ADIOS),” in CLADE 2008 at HPDC.
Boston, Massachusetts: ACM, June 2008. [Online]. Available:
http://www.adiosapi.org/uploads/clade110-lofstead.pdf

[8] G. Liu, “Personal communications,” 2014.

[9] Sam Bigger, “Why use Lustre,” https://wiki.hpdd.intel.com/display/
PUB/Why+Use+Lustre, 2011.

[10] J. Dongarra, H. Meuer, and E. Strohmaier, “Top500 supercomputing
sites,” http://www.top500.org, 2009.

[11] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini system intercon-
nect,” in Proceedings of IEEE High Performance Interconnects (HOTI),
August 2010.

[12] Intel Inc., “Lustre File System, Operations Manual for Lustre - Version
2.0,” http://wiki.lustre.org/images/3/35/821-2076-10.pdf, 2011.

[13] D. A. Dillow, G. M. Shipman, S. Oral, and Z. Zhang, “I/O congestion
avoidance via routing and object placement,” in Proceedings of Cray
User Group Conference (CUG 2011), 2011.

[14] M. Luo, D. K. Panda, K. Z. Ibrahim, and C. Iancu, “Congestion
avoidance on manycore high performance computing systems,”
in Proceedings of the 26th ACM International Conference on
Supercomputing, ser. ICS ’12. New York, NY, USA: ACM, 2012,
pp. 121–132. [Online]. Available: http://doi.acm.org/10.1145/2304576.
2304594

[15] D. Lugones, D. Franco, and E. Luque Fadón, “Dynamic routing
balancing on infiniband network,” Journal of Computer Science &
Technology, vol. 8, 2008.

[16] C. N. Castillo, D. Lugones, D. Franco, and E. Luque, “Predictive and
distributed routing balancing for high speed interconnection networks,”
in Cluster Computing (CLUSTER), 2011 IEEE International Conference
on. IEEE, 2011, pp. 552–556.

[17] P. Borovska and D. Kimovski, “Adaptive flow control in high-
performance interconnection networks,” The Journal of Supercomput-
ing, pp. 1–24, 2013.

[18] P. Geoffray and T. Hoefler, “Adaptive routing strategies for modern high
performance networks,” High-Performance Interconnects, Symposium
on, pp. 165–172, 2008.

[19] F. Petrini, W.-c. Feng, A. Hoisie, S. Coll, and E. Frachtenberg,
“The Quadrics Network: High-Performance Clustering Technology,”
IEEE Micro, vol. 22, pp. 46–57, January 2002. [Online]. Available:
http://portal.acm.org/citation.cfm?id=623303.624502

[20] G. Grider, H. Chen, J. Nunez, S. Poole, R. Wacha, P. Fields, R. Mar-
tinez, P. Martinez, S. Khalsa, A. Matthews, and G. Gibson, “PaScal
- a new parallel and scalable server IO networking infrastructure for
supporting global storage/file systems in large-size Linux clusters,”
Performance, Computing, and Communications Conference, 2002. 21st
IEEE International, p. 46, 2006.

[21] J. D. Rosario and A. Choudhary, “High performance I/O for massively
parallel computers: Problems and prospects,” IEEE Computer, vol. 27,
no. 3, pp. 59–68, 1994.

[22] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson, “Improved
read performance in a cost-effective, fault-tolerant parallel virtual file
system (CEFT-PVFS),” in Proceedings of 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGrid, 2003, pp. 730
– 735.

[23] R. B. Ross, R. Thakur et al., “Pvfs: A parallel file system for linux
clusters,” in in Proceedings of the 4th Annual Linux Showcase and
Conference, 2000, pp. 391–430.

[24] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage
virtualization: Integration and load balancing in data centers,” in
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
ser. SC ’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 53:1–53:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1413370.1413424

[25] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Dynamic load
balancing for i/o-intensive tasks on heterogeneous clusters,” in
High Performance Computing - HiPC 2003, ser. Lecture Notes in
Computer Science, T. Pinkston and V. Prasanna, Eds., vol. 2913.
Springer Berlin Heidelberg, 2003, pp. 300–309. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24596-4_32

[26] E. Horowitz and S. Sahni, “Computing partitions with applications to
the knapsack problem,” J. ACM, vol. 21, no. 2, pp. 277–292, Apr.
1974. [Online]. Available: http://doi.acm.org/10.1145/321812.321823

[27] L. Caccetta and A. Kulanoot, “Computational aspects of hard knapsack
problems,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 47, no. 8, pp. 5547 – 5558, 2001, proceedings of the
Third World Congress of Nonlinear Analysts. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0362546X01006587

[28] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[29] M. S. Hung and J. C. Fisk, “A heuristic routine for solving large loading
problems,” Naval Research Logistics Quarterly, vol. 26, pp. 643 – 650,
1979.

[30] C. Chekuri and S. Khanna, “A ptas for the multiple knapsack problem,”
in Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’00. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2000, pp. 213–222. [Online].
Available: http://dl.acm.org/citation.cfm?id=338219.338254

[31] C. Chekuri and R. Motwani, “Precedence constrained scheduling to
minimize sum of weighted completion times on a single machine,”
Discrete Applied Mathematics, vol. 98, no. 1âĂŞ2, pp. 29 – 38,
1999. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0166218X98001437

[32] S. G. Kolliopoulos and G. Steiner, “Partially-ordered knapsack and
applications to scheduling,” in Algorithms - ESA 2002, ser. Lecture
Notes in Computer Science, R. Mohring and R. Raman, Eds., vol.
2461. Springer Berlin Heidelberg, 2002, pp. 612–624. [Online].
Available: http://dx.doi.org/10.1007/3-540-45749-6_54

[33] J. M. Levesque, R. Sankaran, and R. Grout, “Hybridizing S3D into an
exascale application using OpenACC: an approach for moving to multi-
petaflops and beyond,” in Proceedings of the International conference
on high performance computing, networking, storage and analysis.
IEEE Computer Society Press, 2012, p. 15.

[34] “IOR HPC benchmark tool,” http://sourceforge.net/projects/ior-sio.
[35] W. Liao, A. Ching, K. Coloma, A. Nisar, A. Choudhary, J. Chen,

R. Sankaran, and S. Klasky, “Using mpi file caching to improve
parallel write performance for large-scale scientific applications,” in
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing.
IEEE, 2007, pp. 1–11.

[36] S. Gupta, “Patches for S3D using libPIO API,” https://gist.github.com/
saurabg/11259267, 2014.

